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INTRODUCTION: The cnidarian polypHydra
undergoes continual self-renewal and is capa-
ble of whole-body regeneration from a small
piece of tissue. The stem cell populations, mor-
phological cell types, and lineage relation-
ships of Hydra are well characterized, but the
molecular definition of its cell states has re-
mained elusive. Capturing the molecular di-
versity ofHydra cells and the transcriptional
programs underlying homeostatic development
would greatly advance the utility of this orga-
nism for tackling questions in developmental
and regenerative biology aswell as neurobiology,
and would help to elucidate ancestral mech-
anisms by means of comparative approaches.

RATIONALE: Recent advances in single-cell
RNA sequencing permit identification of the
complete molecular diversity of cell states in

an animal. This includes capturing the tran-
scriptomes of cells in the process of differen-
tiation. Ordering such cells into differentiation
trajectories can uncover the genetic cascades
that accompany cell fate specification.Here, we
applied these approaches to Hydra to uncover
the molecular cell complement, characterize
the nervous system, and capture cell differen-
tiation in the homeostatic adult.

RESULTS:We generated ~25,000 single-cell
transcriptomes from Hydra using Drop-seq,
clustered the cells, and annotated cell states.
These data identified candidate molecular
markers for elusive cell populations such as
multipotent interstitial stem cells and germline
stem cells. We then constructed differentiation
trajectories for cells from each of the three cell
lineages found in Hydra using the software

URD. This revealed the dynamics of gene ex-
pression that occur during cell specification and
differentiation in the adult Hydra, including
the spatial and temporal expression of tran-
scription factors and gene modules. To identify
potential cell state regulators, we used ATAC-
seq to reveal regulatory regions of coexpressed
genes, identified enriched transcription factor
binding motifs within these regulatory regions,
and matched these motifs to coexpressed

candidate transcriptional
regulators. Our trajectory
reconstruction also iden-
tified similarities between
the neurogenesis and gland
cell differentiation path-
ways that suggest a shared

or similar progenitor state. We propose a
model in which interstitial stem cells give
rise to a bipotential progenitor in the ecto-
dermal layer, which crosses the extracellular
matrix to supply the endodermal layer with
neurons and gland cells. Additionally, trajec-
tory reconstructions of individual cell types
(including gland cells and epithelial cells of
the ectoderm and endoderm) uncovered gene
expression changes that occur as they are
translocated along the body column; these
results suggest candidate genes and pathways
involved in spatial patterning along the oral-
aboral axis. Finally, we profiled neurons and
neuronal progenitors that were enriched using
fluorescence-activated cell sorting and used
the data to build a molecular map of the ner-
vous system. We found 12 distinct neuronal
subtypes and determined their location using
differential gene expression analysis, in situ
hybridization, and transgenic approaches. Ac-
cess to neuronal transcriptional signatures, in-
cluding the first molecular markers specific to
endodermal neurons, creates opportunities for
precise manipulations of the nervous system.

CONCLUSION: We provide a molecular map
ofHydra cell states, including differentiation
trajectories for each lineage, identification
of candidate regulators of cell states, and a
spatial/molecular map of the nervous system.
This resource identifies numerous candidates
for functional testing, and we therefore anti-
cipate that it will accelerate the discovery of
developmental mechanisms in this highly re-
generative animal.Hydrahas diverse cell spec-
ification pathways that can be captured in
one life stage by a relatively small number of
sequenced single cells, which paves the way
to study organism-wide changes at a single-cell
level in response to perturbations.▪
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Uncovering Hydra transcriptional cell states and cell differentiation trajectories. Single-
cell RNA sequencing of homeostatic Hydra reveals a molecular map of Hydra cell states.
We built differentiation trajectories, identified cell state–specific gene modules, and combined
single-cell data with ATAC-seq to uncover putative regulators of cell states.P
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The adult Hydra polyp continually renews all of its cells using three separate stem cell
populations, but the genetic pathways enabling this homeostatic tissue maintenance
are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and
identified the molecular signatures of a broad spectrum of cell states, from stem cells to
terminally differentiated cells. We constructed differentiation trajectories for each cell
lineage and identified gene modules and putative regulators expressed along these
trajectories, thus creating a comprehensive molecular map of all developmental lineages in
the adult animal. In addition, we built a gene expression map of the Hydra nervous system.
Our work constitutes a resource for addressing questions regarding the evolution of
metazoan developmental processes and nervous system function.

H
ydrozoans have been at the center of fun-
damental discoveries in developmental
biology, including animal regeneration
and early observations of stem cells (1, 2).
Among hydrozoans, the cell populations

and lineage relationships are best characterized
in the freshwater polyp Hydra (Fig. 1, A to D)
(3–7). Homeostatic somatic maintenance of the
adult Hydra polyp depends on the activity of the
differentiation pathway for all cells, which are
replaced approximately every 20 days (8). Hydra
has three cell lineages—endodermal epithelial,
ectodermal epithelial, and interstitial—with each
lineage supported by its own stem cell popula-
tion (Fig. 1, A to D) (9). All epithelial cells in the
body column are mitotic unipotent stem cells,
resulting in continual displacement of cells
toward the extremities. Epithelial stem cells
differentiate to build the foot at the aboral end
and the hypostome and tentacles at the oral end
(Fig. 1, A and C); differentiated cells are even-
tually shed from the extremities (10). Multipotent
interstitial stem cells (ISCs) give rise to the three
somatic cell types of the interstitial lineage—
nematocytes, neurons, and gland cells (Fig. 1D)—
and can also replace germline stem cells (GSCs)
if they are experimentally depleted (6, 11, 12)
(Fig. 1D). The cnidarian-specific stinging cells,
the nematocytes, can fire once and are then
discarded; neurons and gland cells are closely
associated with epithelial cells and thus are con-

tinually displaced and lost (13). Interstitial cells
are maintained by three mechanisms: (i) mitotic
divisions of ISCs, progenitors, and gland cells
(12); (ii) ISC differentiation into neurons, nema-
tocytes, and gland cells (5, 7); and (iii) change
in the expression and function of neurons and
gland cells with position (14, 15). Thus, cell iden-
tity in Hydra depends on coordinating stem cell
differentiation and gene expression programs in
a manner dependent on cell location. Under-
standing the molecular mechanisms that under-
lie cellular differentiation and patterning in Hydra
would be greatly facilitated by the creation of a
spatial and temporal map of gene expression.
We used single-cell RNA sequencing (scRNA-

seq) to complement this extensive knowledge
ofHydra developmental processes. We collected
~25,000Hydra single-cell transcriptomes cover-
ing a wide range of differentiation states and
built differentiation trajectories for each lineage.
These trajectories allowed us to identify putative
regulatory modules that drive cell state speci-
fication, find evidence for a shared progenitor
state in the gland cell and neural differentiation
pathways, and explore gene expression changes
along the oral-aboral axis. Finally, we generated
a molecular map of the nervous system with
spatial resolution, which provides opportunities
to study mechanisms of neural network plastic-
ity and nervous system evolution. We have made
the single-cell data available at the Broad In-
stitute’s Single Cell Portal. We anticipate that
providing a comprehensive molecular map as a
resource to the developmental biology and neu-
roscience communities will rapidly advance the
ability of researchers to make discoveries using
Hydra. Cnidarians such as Hydra hold an in-
formative position on the phylogenetic tree as

the sister group to bilaterians (16) and largely
have the same complement of gene families found
in vertebrates (17–19). Thus, this dataset, in com-
bination with the existing cnidarian single-cell
dataset for Nematostella (20), offers the op-
portunity to identify conserved developmen-
tal mechanisms.

Single-cell RNA sequencing of whole
Hydra reveals cell state transitions

Thirteen droplet-based single-cell RNA-seq (Drop-
seq) librarieswere prepared fromdissociatedwhole
adult Hydra polyps, and two neuron-enriched
libraries were prepared using fluorescence-
activated cell sorting (FACS)–enriched, green fluo-
rescent protein (GFP)–positive neurons from
transgenic Hydra (figs. S1 and S2 and tables S1
and S2). We mapped sequencing reads to a ref-
erence transcriptome and filtered for cells with
300 to 7000 detected genes and 500 to 50,000
unique molecular identifiers (UMIs), resulting
in a datasetwith a detectedmedian of 1936 genes
and 5672 UMIs per cell (table S3). We clustered
the cells, annotated cluster identity using pub-
lished gene expression patterns (Fig. 1, E and F,
and fig. S3), and further validated identities by
performing RNA in situ hybridization experi-
ments (fig. S4). In the clustering, cells separated
according to cell lineage (Fig. 1E), and we ob-
served the expected cell populations within each
lineage (Fig. 1F). We captured cells in a wide
range of differentiation states.
Several differentiation trajectories are evident

even in the t-distributed stochastic neighbor em-
bedding (t-SNE) representation, similar to find-
ings in scRNA-seq studies performed in planarians
(21, 22). For example, clusters that correspond to
differentiated head and foot epithelial cells are
connected to their respective body column stem
cell clusters (Fig. 1F). Additionally, the intersti-
tial stem cell clusters are connected to both neu-
ronal andnematocyte progenitors (nematoblasts).
We also identified distinct clusters for differ-
entiated cells of the interstitial lineage—neurons,
gland cells, nematocytes, and germ cells (Fig. 1F).
We applied non-negative matrix factorization
(NMF) to the full dataset and subsequently to all
lineage subsets to identify modules of genes that
are coexpressed within cell populations (fig. S5)
(23, 24). As described below and in the supple-
mentary materials, the recovered gene modules
were used for doublet identification (see sup-
plementary methods for discussion of doublet
categories, figs. S2 and S6 to S9), trajectory char-
acterization, and the identification of transcription
factor binding sites enriched in the cis-regulatory
elements of co-regulated genes.

Trajectory reconstruction of epithelial
cells reveals position-dependent
gene expression

Epithelial cells constantly adjust their gene ex-
pression relative to their position as they divide
in the body column and are displaced toward the
extremities (Fig. 1A). To identify these position-
dependent gene expression patterns, we performed
trajectory analyses on subsets of endodermal
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and ectodermal epithelial cells (Fig. 2, A and B,
and fig. S10, A to C). We ordered cells along the
oral-aboral axis by using the R package URD to
generate branching trajectories for each lineage
spanning from the foot (aboral) to the hypostome
and tentacle (oral) as two separate endpoints (24).
URD connects cells with similar gene expression
and uses simulated random walks to find gene
expression trajectories between terminal cell pop-
ulations and a starting progenitor cell population.
This required removing biological and technical
doublets from the epithelial cell subsets, which
we accomplished by using NMF module coex-
pression to identify doublet signatures (see meth-
ods and fig. S7). To validate these differentiation
trajectories, we visualized the spatial expression
of several previously characterized genes and
validated the expression of several uncharacter-
ized genes by RNA in situ hybridization (Fig. 2, C
to M, and figs. S11 to S13).
We identified epithelial genes with variable

expression along the oral-aboral axis, including
differentially expressed genemodules identified
by NMF (figs. S14 to S17). These spatially and
temporally resolved gene expression profiles for
body column epithelial cells provide access to
putative regulators of epithelial cell terminal dif-

ferentiation at the oral and aboral ends, such
as transcription factors and signaling molecules
(Fig. 2 and figs. S12 and S15). For example, we
find differential expression along the body axis
of previously uncharacterized genes in the Wnt,
BMP (bone morphogenetic protein), and FGF
(fibroblast growth factor) signaling pathways
(Fig. 2). Therefore, these data suggest candidate
genes and pathways for functional testing to bet-
ter understand oral-aboral patterning in Hydra.

Identification of multipotent interstitial
stem cells and trajectory reconstruction
of the interstitial lineage

We extracted 12,470 interstitial cells from the
whole dataset (Fig. 1E and fig. S10D), performed
subclustering, and annotated the clusters through
the expression of known and new markers (Fig.
3A and fig. S18). The t-SNE representation of in-
terstitial cells showed evidence for ISC differen-
tiation (Fig. 3A and fig. S18, A toH). NMF analysis
was used to identify gene modules associated
with interstitial lineage differentiation pathways
(fig. S19). We identified a population of cells that
largely lack expression of differentiation gene
modules (i.e., the putativemultipotent ISCs) and
used this cell population as the root in an URD

trajectory reconstruction (fig. S19). HvSoxC (25)
was found to be expressed in transition states
between candidate ISCs and differentiated neu-
rons and nematoblasts, which suggests that the
expression of this gene marks cells undergoing
differentiation (Fig. 3B and fig. S20).We attempted
to identify transcripts specific to the putative
ISC population and found only a single marker
with no shared similarities to known proteins
(Fig. 3C and fig. S21A). ISCs may therefore be
largely defined by an absence of cell type–specific
markers, similar to planarian cNeoblasts (21).
The URD reconstruction recovered a branching
tree of interstitial stem cell differentiation that
resolves neurogenesis, nematogenesis, and gland
cell differentiation (Fig. 3D).We performeddouble
fluorescence in situ hybridization (FISH) to vali-
date predicted transition states (Fig. 3, E and F,
and figs. S20 to S22).
The trajectory analysis of the interstitial lineage

suggests that neuron and gland cell differenti-
ation transit through a previously undescribed
shared cell state (Fig. 3D), whereas nematogenesis
is distinct. To test this result, we identified genes
that are expressed in the progenitor state common
to neural and gland cell differentiation, including
Myc3 (t18095) (26) andMyb (t27424) (Fig. 3, D
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Fig. 1. Hydra tissue composition and
single-cell RNA sequencing of 24,985
Hydra cells. (A) The Hydra body is a hollow
tube with an adhesive foot at the aboral end
(bd, basal disk; ped, peduncle) and a head with a
mouth and a ring of tentacles at the oral end.
The mouth opening is at the tip of a cone-shaped
protrusion, the hypostome. (B) Enlargement of
box in (A). The body column consists of two
epithelial layers (endoderm and ectoderm)
separated by an extracellular matrix, the meso-
glea. Cells of the interstitial cell lineage (red)
reside in the interstitial spaces between
epithelial cells, except for gland cells, which are
integrated into the endodermal epithelium.
Ectodermal cells can enclose nerve cells or
nematocytes, forming biological doublets.
(C) Epithelial cells of the body column are
mitotic, have stem cell properties, and give rise
to terminally differentiated cells of the hypo-
stome (hyp), tentacles, and foot. (D) Schematic
of the interstitial stem cell lineage. The lineage is
supported by a multipotent interstitial stem
cell (ISC) that gives rise to neurons, gland cells,
and nematocytes; ISCs are also capable of
replenishing germline stem cells if they are lost.
(E) t-SNE representation of clustered cells
colored by cell lineage. (F) t-SNE representation
of clustered cells annotated with cell state.
ec, ectodermal; en, endodermal; Ep, epithelial
cell; gc, gland cell; id, integration doublet; mp,
multiplet; nb, nematoblast; nem, differentiated
nematocyte; pd, suspected phagocytosis
doublet; prog, progenitor. id, mp, and pd are
categories of biological doublets. Arrows indicate
suggested transitions from stem cell populations to
differentiated cells. [(A) to (D) adapted from (50)]
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and E, and fig. S21). We identified the spatial
location of Myb-positive cells using FISH and
found positive cells in both the endodermal and
ectodermal layers (Fig. 3F and fig. S22). A subset of
Myb-positive cells coexpress the neuronal marker
NDA-1 (27), consistent with Myb-positive cells
giving rise to neurons in both epithelial layers
(Fig. 3, E and F, and fig. S22). Furthermore, we
found endodermal Myb-positive cells that coex-
press COMA (t2163), a gene expressed during
gland cell differentiation and in all gland cell
states (Fig. 3, E and F, and figs. S21E and S22).
ISCs reside in the ectodermal layer but are the
source of both new gland cells and neurons in
the endodermal layer (12, 28). The data suggest
the existence of twoMyb-positive progenitor pop-
ulations: one that stays in the ectoderm to give
rise to neurons, and another that crosses the
mesoglea to the endodermal layer and subsequent-
ly gives rise to endodermal neurons and gland
cells (Fig. 3G). Finally, we find that many of the
gene modules identified by NMF analysis were
specific to each differentiation pathway with or-
dered expression in pseudotime (fig. S23), thus
revealing gene expression changes that underlie
differentiation in the interstitial lineage.

Subtrajectory analyses of interstitial
cell types
We next explored the specification of different
cell types within the interstitial lineage (Fig. 1D).
First, we examined nematocytes, which contain
one of the most complex eukaryotic organelles,
nematocysts (29); these are used to sting and
immobilize prey. Hydra nematocytes each have
one of four types of nematocysts: desmonemes,
holotrichous or atrichous isorhizas, and steno-
teles (30, 31). We identified one cluster of differ-
entiated nematocytes, which contains nematocytes
that harbor either desmonemes or stenoteles
(Fig. 3A, cluster “nematocyte,” and fig. S24, A
to F). In addition, we annotated the differen-
tiation trajectories of nematoblasts and iden-
tified gene modules that are expressed as they
produce these two types of nematocytes (Fig. 3,
A and D, Fig. 4A, and figs. S23 to S25). Although
extensive work on nematocyst diversity has been
facilitated by their extreme morphological and
functional differentiation, little is known about
nematocyte molecular diversity. The identifi-
cation of genes that are differentially expressed
between nematocytes harboring different nema-
tocyst types (Fig. 4A and figs. S23 to S25) provides

a basis for understanding the specification and
construction of these extraordinary organelles,
which are the defining feature of Cnidaria.
Second, we analyzed gland cells, which are

interspersed between endodermal epithelial
cells. Gland cell numbers are maintained both
by specification of new gland cells from ISCs
and by mitotic divisions of differentiated gland
cells (7). We were able to capture ISC differen-
tiation into gland cells in the trajectory anal-
ysis (Fig. 3D and fig. S26). Zymogen gland cells
(ZMGs) are found throughout the body and
transdifferentiate into granular mucous gland
cells (gMGCs) when they are displaced into the
head (Fig. 4B). Both of these cell types exhibit
location-dependent changes in gene expression,
and we captured these by building linear tra-
jectories along the oral-aboral axis (Fig. 4C and
figs. S14 and S27). We hypothesized that spu-
mous mucous gland cells (sMGCs), a separate
type of gland cells present in the head, may
exhibit similar location-dependent gene expres-
sion profiles that were previously unappreciated.
Indeed, reconstruction of a linear trajectory un-
covered oral-aboral organization of gene ex-
pression in this cell type, including several oral
organizer genes (such as HyWnt1, HyWnt3,
HyBra1, andHyBra2) in the orally located sMGCs
(Fig. 4D and figs. S14 and S28). This raises the
possibility that these cells participate in pat-
terning the head. Overall, our analysis reveals a
broad range of gland cell states in Hydra that
can be achieved through multiple paths.
Finally, we explored the germ cell clusters

recovered in the dataset. We excluded germline
cells from the interstitial lineage tree reconstruc-
tion because differentiation of GSCs from ISCs
does not typically occur in a homeostatic animal
(11); thus, we did not expect to observe transition
states linking ISCs to GSCs. However, we did elu-
cidate the spermatogenesis trajectory by analyz-
ing the progression of cell states found in the two
male germline clusters that were recovered in the
subclustering of interstitial cells and used these
data to identify and confirm several new male
germline genes (figs. S14, S29, and S30). We
identified two female germ cell clusters, which
likely correspond to early and late female germ
cell development (Fig. 3A). We performed in situ
hybridizations for two genes (HyFem-1, HyFem-
2) expressed in a subset of cells found in the early
female germline cluster and found positive cells
scattered throughout the body column, whichwe
hypothesize are GSCs (Fig. 4, E to H, and fig. S30,
G to N). If so, this would be the first report of
gene expression inHydra that is specific to GSCs
and would allow for the study of GSCs in Hydra
through the construction of GSC reporter trans-
genic lines.

Identification of putative transcriptional
regulators of cell state–specific
regulatory modules

The construction of differentiation trajectories
allows us to determine the spatial and temporal
expression patterns of transcription factors,
and thus gain insight into the gene regulatory
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Fig. 2. Identification of genes with differential expression along the oral-aboral axis. (A and
B) t-SNE representation of subclustered endodermal epithelial cells (A) and subclustered ectodermal
epithelial cells (B). (C and D) Epithelial cells were ordered using URD to reconstruct a trajectory
where pseudotime represents spatial position. Scaled and log-transformed expression is visualized.
(C) Trajectory plots for previously uncharacterized putative signaling genes expressed in ectodermal
epithelial cells of foot and tentacles. Genes: BMP antagonist CHRD (t35005), FGF1 (t12060), and
Wnt antagonists DKK3 (t10953), SFRP3 (t19036), and APCD1 (t11061). (D) Trajectory plots for genes
expressed in a graded manner in endodermal epithelial cells. Genes: BMP antagonist “DAN domain–
containing gene” t2758, secreted Wnt antagonist FZD8 (t15331), FGF receptor FGRL1 (t14481),
homeobox protein HXB1 (t1602). (E to M) Epithelial expression patterns obtained using RNA in situ
hybridization consistent with predicted patterns. Whole mounts and selected close-ups are shown.
Arrowheads indicate ectodermal signal. t, tentacle; bd, basal disk. Scale bars: whole mounts
[including (G)], 500 mm; close-ups, 100 mm.
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networks that control cell type specification.We
aimed to identify the transcription factor bind-
ing sites shared by coexpressed genes and can-
didate transcription factors that may bind these
sites. To identify coexpressed genes, we used
NMF to interrogate a genome-mapped dataset
and found 58metagenes (i.e., sets of coexpressed
genes) (figs. S31 and S32). To identify the putative
regulatory regions of these coexpressed gene sets,
we performed ATAC-seq (assay for transposase-
accessible chromatin using sequencing) onwhole
Hydra (fig. S33). We identified regions of local-
ly enriched ATAC-seq read density (peaks),
which signify regions of open chromatin, and
restricted the analysis to peaks within 5 kb
upstream of the start codon of the genes in
each NMF metagene (figs. S32 to S34). We then
performed motif enrichment analysis to iden-
tify transcription factor binding sites that may
control the expression of genes belonging to a

metagene. We found at least one significantly
enriched motif for each of 39 metagenes.
Thesemetagenes had distinct sets of enriched

motifs, suggesting differences in the transcrip-
tion factor classes underlying various cell states
(Fig. 5A and fig. S35). For example, the paired
box (Pax)motif is enriched in regulatory regions
of genes expressed during early and mid-stages
of nematogenesis, the forkhead (Fox) motif is
enriched at mid- and late stages, and the POU
motif is enriched only in late stages. The B cell
factor (EBF) motif is enriched in the female
germline and the TCF motif is enriched in
neurons and gland cells. Among epithelial cell
states, motif enrichment is less tightly restricted
to particular cell states. However, the ETS do-
main binding motif is enriched in metagenes
expressed in endodermal and ectodermal epi-
thelial cells in the extremities (tentacles and
foot). Additionally, homeodomain (Otx and Arx)

and bZip motifs are enriched throughout both
epithelial lineages, and forkheadmotifs appeared
to be associated with genes expressed in endo-
dermal epithelial cells (Fig. 5A). The enrich-
ment of forkhead motifs in Hydra endoderm
and Nematostella digestive filaments is consist-
ent with a conserved function for forkhead tran-
scription factors in cnidarian endodermal fate
specification that is also found across bilaterians
(20, 32).
To determine the regulatory factors that may

be coordinating gene coexpression modules,
we identified transcription factors within each
metagene that are predicted to interact with the
binding site(s) enriched in that metagene using
a combination of Pfam domain annotation and
profile inference (JASPAR) (fig. S34). For 25 of
the 39metagenes with enriched binding motifs,
we found one or multiple candidate transcrip-
tion factors with putative function in cell fate
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close-up highlights cell states with coexpression. (F) Double labeling
using fluorescent RNA in situ hybridization is consistent with neuron
differentiation in the endodermal and ectodermal epithelial layers
and demonstrates the existence of transition states observed in the
trajectory analysis. Additionally, endodermal gland cell differentiation
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gland cell; nb, nematoblast; smgc, spumous mucous gland cell;
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specification (table S5). For example, we found a
metagene (wg32) that consists of 73 genes co-
expressed during nematogenesis. A Pax transcrip-
tion factor binding motif was significantly
enriched in the potential regulatory regions near
those genes, and the Pax-A transcription factor
(t9974) is part of the metagene (Fig. 5, A and B,
and fig. S35). The results therefore strongly sug-
gest that Pax-A functions during early nemato-
genesis. This is concordant with a recent finding
that Pax-A is required for nematogenesis during
Nematostella development (20, 33). Similarly, we
found evidence that an RX homeobox tran-
scription factor (t22218) functions in basal disk
development and an RFX transcription factor
(t30134) functions in gland cell specification;
the latter was also reported for Nematostella
(Fig. 5, C and D) (20). Homeodomain transcrip-
tion factor binding motifs are enriched in ec-
toderm tentacle genes (metagene wg71) and the
analysis recovered aristaless-related homeobox
geneHyAlx (t16456) as a regulator (table S5 and
fig. S11A). A role for HyAlx during tentacle for-
mation has been established previously (34). We
provide all transcription factors that met our
criteria as candidate regulators, including cases
such as the basal disk where multiple TFs are
both expressed in the proper context and pre-
dicted to bind an enriched motif (table S5).
Overall, we identified several candidates for
regulators of Hydra cell fate specification.

A molecular map of the Hydra
nervous system
TheHydra nervous system consists of two nerve
nets, one embedded in the ectodermal epithelial
layer and one embedded in the endodermal epi-
thelial layer. Neurons are concentrated at the
oral and aboral ends of the polyp (35). To deter-
mine the molecular nature of neuronal subtypes,
we extracted neural progenitors and differen-
tiated neurons from the dataset for subcluster
analysis (fig. S10, E and F, and fig. S36). We
identified 15 clusters: Three clusters consist
of neuronal progenitor cells, expressing pro-
genitor genes such as Myb/Myc3, and the re-
maining 12 clusters are differentiated neuronal
subtypes (Fig. 6A and figs. S37 to S40). To place
these 12 neuronal subtypes into the ectodermal
or endodermal nerve net, we performed TagSeq
(36) on separated tissue layers and conducted
differential gene expression analysis to identify
genes with significantly higher expression in the
endodermal or ectodermal epithelial layer (fig.
S37, seemethods). Because the neurons remained
attached to the epithelia, differentially expressed
genes included neuron-specific genes, which al-
lowed us to score the neuronal clusters as ecto-
dermal or endodermal (Fig. 6A and fig. S37).
To determine the location of the ectodermal

neuronal subtypes along the oral-aboral axis,
we generated a list of neuronal markers and
selected genes to test spatial location using a

combination of new and previously published
in situ expression patterns (Fig. 6, A and B, and
figs. S38 to S41). To test the endodermal identity
of clusters en1 and en2, we examined NDF1
(t14976, specific to cluster en1) and Alpha-LTX-
Lhe1a-like (t33301, specific to cluster en2) ex-
pression by generating GFP reporter lines. For
NDF1, GFP is expressed in endodermal ganglion
neurons in the entire body except tentacles
(Fig. 6C and fig. S40, N and O). For Alpha-LTX-
Lhe1a-like, GFP is expressed in sensory neurons
along the body column in the endoderm (Fig. 6,
D and E). Therefore, the transgenic reporter lines
confirm endodermal localization of clusters en1
and en2 and demonstrate our ability to identify
specific biomarkers for each neuronal subtype.
In summary, we have produced a molecular
map of theHydra nervous system that describes
12 molecularly distinct neuronal subtypes and
their in situ locations.

Discussion

We present an extensively validated gene ex-
pression map of Hydra cell states and differ-
entiation trajectories, thus providing access to
transcription factors expressed at key develop-
mental decision points. Several recent studies
have similarly demonstrated the value of con-
ducting whole-animal (20–22) or whole-embryo
scRNA-seq (20, 24, 37–39) to uncover cell type
diversity and the regulatory programs that drive
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cell type specification. Conducting scRNA-seq
on a diversity of organisms will provide insights
into the core regulatory modules underlying cell
type specification and the evolution of cellular
diversity (40). Thus, our Hydra dataset provides
an additional opportunity for comparisons to be
made in an evolutionary context.
Analysis of Hydra by scRNA-seq uncovered

new technical challenges, and we provide solu-
tions to these challenges that will likely be ap-
plicable to many systems. For example, Hydra
epithelial cells are highly phagocytic (41), a
phenomenon that has been observed in a va-
riety of systems, and thus will likely present a
challenge for interpretation of scRNA-seq results
in future studies (42–44). We implemented an
approach that has been incorporated into URD,
in which we use NMF as an unbiased method
to identify anomalies in the data that likely
represent cell doublets or phagocytic events.
We envision that our approach could be applied
to other systems and will be particularly useful
in animals where existing expression data are
limiting.
Our gene expression map for a dynamic and

regenerative nervous system opens the door
to understanding the molecular basis of neu-
ronal plasticity and regeneration. Of the 12 neu-
ronal subtypes we have identified, three (the
endodermal neurons) were previously unchar-
acterized molecularly. Three distinct neuro-
nal circuits have been described in Hydra: two
in the ectoderm [rhythmic potential 1 (RP1) and
contraction burst (CB)] and one in the en-

doderm [rhythmic potential 2 (RP2)] (45). These
circuits are likely composed of ganglion neurons
connected throughout the body. The charac-
teristic localization of these circuits, combined
with the in situ locations of the ganglion neuron
molecular subtypes we identified (Fig. 6A), sug-
gest the molecular identities of the neurons that
constitute these distinct circuits. We propose the
following: (i) The endodermal neurons of cluster
en1 (Fig. 6, A and B) make up the RP2 circuit;
(ii) the neurons of clusters ec3A, ec3B, and ec3C
make up the RP1 circuit; and (iii) the neurons of
clusters ec1A, ec1B, and ec5 make up the ecto-
dermal CB circuit. This is supported by the ob-
servation that the RP1 circuit is active in the
basal disk (cluster ec3A), whereas the CB circuit
extends aborally only to the peduncle (cluster ec5)
(45). Neuron subtype–specific transgenes, such
as the two examples presented here, will provide
powerful tools for experimental perturbations
to test neuronal function and nervous system
regeneration by enabling precise alterations to
these neural circuits. Nervous system function
in such engineered animals can be tested using
newly developedmicrofluidic tools that allow for
simultaneous electrical and optical recordings in
behaving animals (46).
The interstitial lineage differentiation trajec-

tories provided several new insights. First, we
identified a marker that may be specific to the
multipotent stem cell population, which could
provide a powerful tool for understanding stem
cell function and fate decisions. Second, our
data suggest the existence of a cell state that is

shared by the neuron and gland cell trajectory
(Fig. 3D). This interpretation is supported by
the colocalization of neural and gland cell pro-
genitors in several independent clustering analy-
ses (Fig. 1F, Fig. 3A, and fig. S31) that consider
different sets of variable genes and sets of cells,
and by the overlap of gene modules for neuro-
genesis and gland cell differentiation (fig. S42).
The shared stem cell of gland cells, neurons, and
nematocytes suggests a shared evolutionary his-
tory of these cell types. The data further suggest
that the evolution of nematocytes coincided with
the emergence of a distinct progenitor. We thus
propose a model in which multipotent ISCs first
decide between a nematocyte or gland/neuron
fate and then a second decision is made by the
common gland/neuron progenitor. This contrasts
with previous models that posit a common
neuron/nematocyte progenitor (47). However,
an alternative explanation is that gland and
neuronal progenitors are separate populations
that share early transcriptional events; thus, fu-
ture fate-mapping experiments will be crucial.
Additionally, our data suggest a model in which
a bipotential gland/neuron progenitor born in
the ectodermal layer, where multipotent ISCs
reside, traverses the extracellular matrix to pro-
vide the endodermal layer with both gland cells
and neurons (Fig. 3G).
Adult Hydra polyps, which are in a constant

state of development, enable the capture of all
states of cellular differentiation using scRNA-
seq. An important future goal is to use scRNA-
seq to rapidly assess the effect of mutations on
all cell types (24, 39, 48). Hydra has a diversity
of fate specifications from multiple stem cell
types, yet is simple enough to be completely cap-
tured by a relatively small number of sequenced
single cells from one life stage. Thus, we are now
able to study organism-wide changes at a single-cell
level in response to perturbations. The transcrip-
tion factors that we identified at key develop-
mental decision points are exciting candidates to
test using this approach. In conclusion, this re-
source and the experimental approaches we
describe open doors in multiple fields including
developmental biology, evolutionary biology, and
neurobiology.

Methods summary

Hydra vulgaris AEP and Hydra vulgaris trans-
genic lines were dissociated into single cells and
were prepared for Drop-seq (49); FACS was
used to enrich for neurons. Sequencing reads
were mapped to a de novo assembled tran-
scriptome and a Hydra genome reference, and
clustering was performed. Subclustering was
performed on the following subsets of the data:
epithelial ectodermal cells, epithelial endodermal
cells, interstitial cells, and neurons and neuronal
progenitors. The in situ location of neuron sub-
clusters was determined using in situ hybridiza-
tion and differential gene expression analysis of
separated epithelial layers. URD (24) was used to
build differentiation trajectories for the intersti-
tial and male germline lineages and to analyze
the spatial expression of genes in the ectodermal,
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endodermal, and gland lineages. To analyze reg-
ulatory regions, we identified coexpression mod-
ules using NMF, performed ATAC-seq to identify
regions of open chromatin, and used motif en-
richment analysis to identify candidate regula-
tors of the gene modules. We used or performed
colorimetric in situ hybridization, FISH, immu-
nohistochemistry, and generation of transgenic
lines to validate biomarkers and cell states. For
complete methods, see supplementarymaterials.
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